News
Blockchain-enabled architecture for lead acid battery circularity
Melchor-Martínez, E. M. et al. Environmental impact of emerging contaminants from battery waste: A mini review. Case Stud. Chem. Environ. Eng. https://doi.org/10.1016/j.cscee.2021.100104 (2021).
Kurzweil, P. Gaston Planté and his invention of the lead-acid battery-The genesis of the first practical rechargeable battery. J. Power Sources 195, 4424–4434. https://doi.org/10.1016/j.jpowsour.2009.12.126 (2010).
Salkuti, S. R. Electrochemical batteries for smart grid applications. Int. J. Electr. Comput. Eng. 11, 1849–1856. https://doi.org/10.11591/ijece.v11i3.pp1849-1856 (2021).
Lead Acid Battery Market Size, Share Global Analysis Report, 2022–2030. Preprint at www.fnfresearch.com/news/global-lead-acid-battery-market (2023).
Exide group & GHS safety data sheet. GHS safety data sheet. Preprint at www.exidegroup.com/sites/default/files/2017 (2016).
Recycling used lead-acid batteries: health considerations. Preprint at apps.who.int/iris/bitstream/handle/10665/259447/9789241512855-eng.pdf (2017).
Used Lead Acid Batteries (ULAB)—Waste Lead Acid Batteries (WLAB) _UNEP—UN Environment Programme. Preprint at www.unep.org/explore-topics/chemicals-waste/what-we-do/emerging-issues/used-lead-acid-batteries-ulab-waste-lead (2020).
Key facts about used lead-acid battery recycling. Preprint at https://timesofindia.indiatimes.com/business/international-business/key-facts-about-used-lead-acid-batteryrecycling/articleshow/82176235.cms (2021).
Salim, H. K., Stewart, R. A., Sahin, O. & Dudley, M. Drivers, barriers and enablers to end-of-life management of solar photovoltaic and battery energy storage systems: A systematic literature review. J. Clean. Prod. 211, 537–554. https://doi.org/10.1016/j.jclepro.2018.11.229 (2019).
Where Do Your Used Lead Acid Batteries Go? Preprint at www.batteryrescue.com.au/news/lead-acid-battery-recycling-process/ (2016).
Otieno, J., Kowal, P. & Mąkinia, J. Monitoring lead concentration in the surrounding environmental components of a lead battery company: Plants, air and effluents—Case study, Kenya. Int. J. Environ. Res. Public Health https://doi.org/10.3390/ijerph19095195 (2022).
The Indian Express. Preprint at indianexpress.com/article/india/environment-90-per-cent-of-lead-batteries-reach-informal-sector-triggering-pollution-5925261/ (2019).
Rees, N. et al. United Nations Environment Programme) Desiree Raquel Narvaez (United Nations Environment Programme) Walker Smith. Preprint at http://www.pureearth.org/wp-content/uploads/2021/03/The-Toxic-Truth-Childrens-Exposure-To-Lead-Pollution-UNICEF-Pure-Earth-2020.pdf (2020).
Wilson, D. C. (David C., United Nations Environment Programme & International Solid Waste Association. Global waste management outlook. 332. Preprint at wedocs.unep.org/handle/20.500.11822/9672 (2015).
Berger, K., Schöggl, J. P. & Baumgartner, R. J. Digital battery passports to enable circular and sustainable value chains: Conceptualization and use cases. J. Clean. Prod. https://doi.org/10.1016/j.jclepro.2022.131492 (2022).
Panza, L., Bruno, G. & Lombardi, F. A collaborative architecture to support circular economy through digital material passports and internet of materials. IFAC-PapersOnLine 55, 1491–1496. https://doi.org/10.1016/j.ifacol.2022.09.601 (2022).
Ali, S. & Shirazi, F. The paradigm of circular economy and an effective electronic waste management. Sustainability (Switzerland) https://doi.org/10.3390/su15031998 (2023).
Ribeiro da Silva, E., Lohmer, J., Rohla, M. & Angelis, J. Unleashing the circular economy in the electric vehicle battery supply chain: A case study on data sharing and blockchain potential. Resour. Conserv. Recycl. 193, 106969. https://doi.org/10.1016/j.resconrec.2023.106969 (2023).
Grassi, A., Guizzi, G., Santillo, L. C., Vespoli, S. & Arlinghaus, J. C. On the development of a blockchain-implementable intermediation model for digital supply chains. IFAC-PapersOnLine 55, 946–951. https://doi.org/10.1016/j.ifacol.2022.09.466 (2022).
River, A. B. & Banafa, A. Secure and smart internet of things (IoT) Using Blockchain and Artificial Intelligence (AI). River Publishers Series in Information Science and Technology. Preprint at www.riverpublishers.com (2018).
Sasikumar, P. & Haq, A. N. Integration of closed loop distribution supply chain network and 3PRLP selection for the case of battery recycling. Int. J. Prod. Res. 49, 3363–3385. https://doi.org/10.1080/00207541003794876 (2011).
Langarudi, N. R., Sadrnia, A. & Sani, A. P. Recovering lead, plastic, and sulphuric acid from automobile used batteries by mathematical reverse logistics network modelling. Prog. Ind. Ecol. Int. J. 13, 63–83. https://doi.org/10.1504/PIE.2019.098786 (2019).
Scur, G., Mattos, C., Hilsdorf, W. & Armelin, M. Lead acid batteries (LABs) closed-loop supply chain: The Brazilian case. Batteries https://doi.org/10.3390/batteries8100139 (2022).
Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. Preprint at www.bitcoin.org (2009).
Choi, T. M. & Siqin, T. Blockchain in logistics and production from Blockchain 1.0 to Blockchain 5.0: An intra-inter-organizational framework. Transp. Res. E Logist. Transp. Rev. https://doi.org/10.1016/j.tre.2022.102653 (2022).
Kumar, R., Choudhary, D., Bang, P., Dua, A. & Sangwan, K. S. A blockchain technology based framework for environmental and social impact authenticity of a 3D printed product. Procedia CIRP 116, 281–286. https://doi.org/10.1016/j.procir.2023.02.048 (2023).
Pincheira, M., Vecchio, M. & Giaffreda, R. Characterization and costs of integrating blockchain and IoT for agri-food traceability systems. Systems https://doi.org/10.3390/systems10030057 (2022).
Zhang, Y., Chen, W. & Li, Q. Third-party remanufacturing mode selection for a capital-constrained closed-loop supply chain under financing portfolio. Comput. Ind. Eng. 157, 137823. https://doi.org/10.1016/j.jclepro.2023.137823 (2021).
Zhan, Y., Wang, B., Lu, R. & Yu, Y. DRBFT: Delegated randomization Byzantine fault tolerance consensus protocol for blockchains. Inf. Sci. (N. Y.) 559, 8–21. https://doi.org/10.1016/j.ins.2020.12.077 (2021).
What is blockchain security? Preprint at www.ibm.com/topics/blockchain-security (2023).
Boubaker, S., Dolatineghabadi, P., Clement, G., Hamdaoui, Y. & Boutaleb, A. A private blockchain platform to manage data exchange between supply chain partners. IFAC-PapersOnLine 55, 3316–3321. https://doi.org/10.1016/j.ifacol.2022.10.222 (2022).
Khan, A. U. R. & Ahmad, R. W. A blockchain-based IoT-enabled E-waste tracking and tracing system for smart cities. IEEE Access 10, 86256–86269. https://doi.org/10.1109/ACCESS.2022.3198973 (2022).
Poongodi, M., Hamdi, M., Vijayakumar, V., Rawal, B. S. & Maode, M. An Effective Electronic waste management solution based on Blockchain Smart Contract in 5G Communities. 2020 IEEE 3rd 5G World Forum (5GWF), Bangalore, India, 1–6; https://doi.org/10.1109/5GWF49715.2020.9221346 (2020).
Farizi, T. S. & Sari, R. F. Implementation of blockchain-based electronic waste management system with hyperledger fabric. 2nd International Conference on ICT for Rural Development (IC-ICTRuDev), Jogjakarta, Indonesia, 1–6. https://doi.org/10.1109/IC-ICTRuDev50538.2021.9656503 (2021).
Kholiya, D., Mishra, A. K., Pandey, N. K., & Tripathi, N. Intelligent framework for waste management using blockchain. 2023 IEEE 11th Region 10 Humanitarian Technology Conference (R10-HTC), Rajkot, India, 91–96. https://doi.org/10.1109/R10-HTC57504.2023.10461757 (2023).
Ambre, D. & Trivedi, P. Design and implementation of a hyperledger fabric-based E-waste management system for home and small-scale businesses. IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI), Gwalior, India, 1–6. https://doi.org/10.1109/IATMSI60426.2024.10503244 (2024).
Santhuja, P. & Anbarasu, V. Blockchain-enabled IoT solution for e-waste management and environmental sustainability through tracking and tracing. Int. J. Eng. Trends Technol. 71(12), 157–167. https://doi.org/10.14445/22315381/IJETT-V71I12P216 (2023).
Sahoo, S., Mukherjee, A. & Halder, R. A unified blockchain-based platform for global e-waste management. Int. J. Web Inf. Syst. 17(5), 449–479. https://doi.org/10.1108/IJWIS-03-2021-0024 (2021).
Dasaklis, T., K. Casino, F. & Patsakis, C. A traceability and auditing framework for electronicequipment reverse logistics based on blockchain: the case of mobile phones. 2020 11th International Conference on Information, Intelligence, Systems and Applications, 1–7 (IISA, Piraeus, Greece). https://doi.org/10.1109/IISA50023.2020.9284394 (2020).
Singh, A. K. et al. Investigating the barriers to the adoption of blockchain technology in sustainable construction projects. J. Clean. Prod. https://doi.org/10.1016/j.jclepro.2023.136840 (2023).
Khalil, U., Malik, O. A. & Hong, O. W. Leveraging a novel NFT-enabled blockchain architecture for the authentication of IoT assets in smart cities. Sci. Rep. 13, 19785. https://doi.org/10.1038/s41598-023-45212- (2023).
Götz, C. S., Karlsson, P. & Yitmen, I. Exploring applicability, interoperability and integrability of Blockchain-based digital twins for asset life cycle management. Smart Sustain. Built Environ. 11(3), 532–558. https://doi.org/10.1108/SASBE-08-2020-0115 (2022).
Blum, M., Feldman, P. & Micali, S. Non-interactive zero-knowledge and its applications. Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, STOC, 103–112. (Association for Computing Machinery, 1988). https://doi.org/10.1145/62212.62222
Bowe, S., Chiesa, A., Green, M., Miers, I., Mishra, P. & Wu, H. (2020). Zexe: Enabling decentralized private computation. 2020 IEEE Symposium on Security and Privacy (SP) 947–964 (2019).
Goldwasser, S., Micali, S. & Rackoff, C. The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208. https://doi.org/10.1137/0218012 (1989).